
JOURNAL OF COMPUTATIONAL PHYSICS 71, lo&l 10 (1987 j 

On the Boundary Treatment in Spectral Methods 
for Hyperbolic Systems* 

CLAUDIO CANUTO AND ALFIO QUARTERONI 

Isriruto di Analisi Numerica del C.N.R., Paoicz, Ita(v 

Received March 5, 1986; revised October 10, 1986 

Spectral methods have been successfully applied to the simulation of slow transients in gas 
transportation networks. Implicit time advancing techniques are naturally suggested by the 
nature of the problem. The aim of this paper is to clarify the correct treatment of the boun- 
dary conditions in order to avoid any stability restriction originated by the boundaries. The 
Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with 
a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem 
is achieved at Courant numbers up to 100. ‘(2 1987 Academic Press. Inc. 

1. INTRODUCTION 

Spectral methods have been recently applied to the numerical simulation of the 
unsteady flow of a gas in long distance transportation networks (see [l] j. The 
regularity properties of the solution [12] make spectral methods particularly 
effective for this class of problems. Engineering accuracy is achieved at a lower 
computational cost than by using more conventional linite-order methods. 

Transients occurring in the normal operation of pipeline networks are usually 
slow. This happens because variations imposed on the physical variables at the 
boundaries are very slow. Moreover, their propagation toward the interior is 
damped by the presence of a strong friction effect. 

These reasons, as well as the need to avoid the severe stability conditions which 
arise from the use of explicit methods for spectral methods, make it highly desirable 
to use implicit methods in time. If a method is considered which is unconditionally 
stable for the pure initial value problem, the boundary conditions have to be 
incorporated into the numerical scheme in such a way that no spurious stability 
restriction is introduced. 

Theoretical and experimental results on the numerical treatment of boundary 
conditions for finite difference approximations of hyperbolic systems are widely 
available in the literature. In [S], Gottlieb, et al. address the issue of correctly 
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imposing the boundary conditions in terms of the physical variables, rather than in 
terms of the “characteristic” ones. They show that the boundary conditions can be 
properly imposed within a finite difference or finite element method which is explicit 
in time, by a procedure of boundary corrections at the end of each time step. There 
is computational evidence that their procedure works for spectral methods as vvell 
(see, e.g., C 111. 

It is the present authors’ impression that implicit time advancing methods have 
not received sufficient attention in [8], hence the.reading of that paper may lead to 
some misunderstanding about the practical implementation of the boundary con- 
ditions in implicit methods. As a matter of fact, the boundq~ corrections proposed 
there destroy unconditional stability, as it will be documented below. 

The purpose of this paper is to discuss in more detail the correct implementation 
of the boundary conditions within an implicit time advancing scheme when a 
Chebyshev collocation method is used in space. We stress that the only uncon- 
ditionally stable treatment of the boundary conditions consists of imposing a: each 
endpoint the prescribed physical conditions together with certain linear com- 
binations of the physical differential equations. The coefficients of these com- 
binations are those which express the incoming characteristic variables in terms of 
the physical ones, Thus the equations at the boundaries have to be incorporated 
into the matrix to be inverted at each time step. 

The Beam and Warming scheme and a class of Lerat-type schemes have been 
chosen in the following discussion as time-marching methods for the time dis- 
cretization of a linear 2 x 2 hyperbolic system. An application to a gas transient 
simulation of industrial interest is also presented, 

2. THE BOUNDARY TREATMENT ON A LINEAR PROBLEM 

The following simple hyperbolic system has been widely considered in the 
literature as a model for more complex situations: 

w, + Aw, = 0, -1 <.Y< 1, r>o, i2.i ) 

where 

The system is supplemented by an initial condition 

w(x, 0) = wO(x), -1 <.Y< 1, 

and the boundary conditions 

,cL(-l,t)=ll’I(l;t)=O’ t > 0. 
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The initial-boundary value problem (2.1 t( 2.4) . IS well posed (see, e.g., [S] ); more 
precisely, for each t > 0 one has 

j.;, ) w(x, t)12 dx < j’, twos 2 d,x 

The matrix A has two eigenvalues of opposite sign 

Al=;, AZ= -+. 

It can be diagonalized as 

A= TAT-’ 

with 

The system (2.1) can be written in diagonal form as 

z, + AZ, = 0, 

where 

z = (u, u)~= T-b! 

(2.5) 

(2.6) 

(2.7) 

(2.9 j 

(2.10) 

are the characteristic variables. The boundary conditions (2.4) become 

(14 + u)( - 1, t) = (U + o)( + 1, t) = 0, t > 0. (2.11) 

We consider a spatial approximation of (2.1) based on the Chebyshev collocation 
method at the points 

,.zcos” 
J N’ 

j = O,..., N. (2.12) 

For each t > 0, the approximate solution, which we still denote by cv(x, t), will be a 
couple of polynomials of degree N in the x variable. The degree N will be kept fixed 
throughout the paper. We denote by 

D= {d~lo<i,~<~~ (2.13) 

the matrix of the Chebyshev pseudospectral derivative at the points (2.12) (see, e.g., 
[9] j. We recall that if an N-degree polynomial )t’ is identified with the vector w of 
its values at the points (2.12), then Dw is the vector of the values of w, at the same 
points. 

We will now introduce time discretization methods for the previous system. 



SPECTRAL METHODS FOR HYPERBOLIC SYSTEMS 103 

Wereafter, we will say that a method is stable for a given Ar if the computed 
solutions I+!” at the times t, = n At satisfy an estimate of the form 

//~I”llIL’(--L,l)~C, tz = 1, 2, 3.... 

with C independent of rz. Unconditional stability will mean stability for all dr > 0. 
We first give numerical evidence to the fact that if the boundary correction 

procedure described in [S] is applied within an. implicit time advancing method, a 
severe stability restriction occurs. 

The differential system (2.1) is collocated at all the points (2.12) (including the 
boundary points) and advanced in time by one step of the Beam and Warming 
method [2], which here reduces to the classical Cranck-Nicolson scheme 

j = O,..., IV. (2.14) 

(Let us recall for further reference that the Beam and Warming scheme applied to 
the conservation law ~$3, + f( ~tl), = 0 is, before space discretization, 

where Ad = IV” + ’ - IP and A(rr) =.f’(~:).) 
The interior values are retained, i.e., LY;+ 1 = +;+ 1 for j= I,..., N- 1, whereas the 

boundary values G;t + ’ and ,i’;;,+ ’ are corrected by solving the linear systems 

(w,);+l =o 
(M’1);;+l+(11’2)~+‘=(li’,);;+‘+(il.3)~+’ 

and 

(l~t~l):;lf’-(lZ~Z)l;+l=(~)~,+l-i~l):~,+~. 

Numerical experiments show that this method is stable only if 

At<0.74At,, 

(2.16) 

(2.17) 

where At, = 16/3N” is the stability limit for the modified Euler method. Although 
the CranckkNicolson method is A-stable for a scalar equation, the stability con- 
dition introduced by the boundary treatment is more severe than that of an explicit 
method. 

We observe here a phenomenon which is well known for finite difference schemes 
as well. Namely, the coupling of an explicit treatment of the boundary conditions 
with an implicit interior scheme may result in a reduction of the stability limit for 
the pure interior scheme. 
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The proper way to treat the boundary conditions is naturally derived using the 
characteristic form (2.9) of the hyperbolic system. In this case it is possible to 
represent the spatially discretized system as an ODE system in the form 

;+fwz=o, (2.18) 

where the matrix A4 already takes into account the boundary conditions. It is clear 
that if A4 is diagonalizable and has the spectrum in the right complex half plane, 
then any A-stable time discretization method yields an unconditionally stable 
scheme for (2.18). In turn, this gives rise to an unconditionally stable scheme for the 
physical system (2.1)-(2.4), via the transformation (2.10). 

It is well known that the Chebyshev collocation method at the points (2.12) for 
the scalar initial boundary value problem 

u, + u, = 0, -1 <x< 1, t>o 

u-1, t)=O (2.19) 

u( x, 0) = uO( x) 

gives stable numerical results. (Unfortunately, so far no proof of an estimate of the 
type (2.5) is known for this method. A stability result involving a modified 
Chebyshev norm can be found in [lo].) The method can be written as an ODE 
system in the form 

where u= (u,,..., ~~v-,)~ and a is the submatrix of D obtained by deleting the last 
row and column. Thus the differential equation is collocated at the interior points 
and at the outflow boundary point x = 1. The matrix b has distinct eigenvalues 
with strictly positive real parts, hence, any A-stable time discretization method will 
produce stable solutions with no stability restriction. 

In analogy with the scalar case, the spatial discretization of the system (2.9) is 

Cur + $x-)(*yj? f, = O, j=o,..., N- 1 
iv, - tYJ+ t) = 0, j = l,..., N 

(2.21) 
u(x,, t) = -24(x,, f) 

u(x,, t) = - u(x,, I). 

In order to cast this system into the form (2.18) we eliminate the unknowns ~4,~ and 
u. through the boundary conditions. Hence, we set 

z = (Uo,..., MN--l, Ul,...r UNIT (2.22) 
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and 

I _-_---- 

-- f&,, . 

in = l,..., IV 

t=o,..., N- I, 

/ = l...., N 

The eigenvalues of n/I have been computed for increasing values of IV. They were 
found to be distinct and with non-negative real parts. 

It follows that the Beam and Warming scheme will produce unconditionaily 
stable approximate solutions of (2.21). They are defined by the system 

3 At 3At 
zl”+‘+Z~(“‘+‘),=zl~-;i(“l~‘;, 

J 
j=O,..., N- 1 \ ‘24.1 i 

i 

r n+, lAT. 
I -7T1U:+‘);=l~.~+f~(Li:);, j= l,.... 9 (224.2) 

- - L 

U”-+I = -Zp+l h M ( 224.3 j 

Co 
II + 1 = -L1l" + I 

0 . f 2 24.4') 

We now go back to the physical equations using the transformation (2.10). At each 
interior point both the characteristic equations are collocated, hence we get 

At the boundary point x0, Eq. (2.24.1) with j = 0 becomes 

where we have set T-’ = {?hk)lC,i,kG2. Similarly at .Y,. Eq. (2.24.2) with j = N gives 

:21 1 2 
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Finally we have the physical boundary conditions 

(w,);;fI=(M.,);ff1=0. (2.28) 

We conclude that at each boundary point the equation to be added to the 
prescribed boundary condition is obtained by collocating a linear combination of 
the physical equations after their discretization by the Beam and Warming scheme. 
The coefficients of this linear combination are entries of the matrix T-’ defined by 
(2.10). 

This is the correct extension to an implicit time advancing scheme of the boun- 
dary treatment proposed in [S] for explicit schemes. 

A class of time discretization schemes of implicit type has been recently proposed 
by Lerat for finite difference approximations of hyperbolic systems (see [ 11,4]). 
The interest of such methods lies in the fact that unconditional stability (in time) is 
achieved by including a second derivative term (in space) into the scheme. Unlike 
the Beam and Warming method, Lerat’s schemes are dissipative in the sense of 
Kreiss, hence spurious oscillations are automatically damped. 

We will introduce hereafter the analogs of a subclass of Lerat schemes in the case 
of spatial discretizations by the Chebyshev collocation method. The previous con- 
siderations on the treatment of the boundary conditions will guide us in defining a 
scheme which is unconditionally stable in time. 

Let us recall that for the conservation law 

It’, + f( II?), = 0 (2.29) 

a class of methods of Lerat’s type reads as (see [ 111) 

where AMY” = d’ + ’ - w”, A( tt’) =f’( ~4,) and p is a negative parameter. The method is 
obtained from the two-term Taylor formula for NJ at t = tn. Time derivatives are 
replaced by space derivatives using (2.29) and NJ” is replaced by IV + /I Aw” in the 
second-order term. 

The same idea can be used in deriving a “Lerat method” for solving 
ODE system like (2.18). Precisely one gets 

a general 

(2.31) 

The stability properties of this method are easily investigated by a normal mode 
analysis. The characteristic root of the method is 

l-/I+(l+&J2/2 
P= 1 +p1’/2 ’ 

(2.32) 
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where ,4 = At,u and p stands for an eigenvalue of M. If p = - & a cancellation occurs 
and the characteristic root is 

(2.33 I 

hence (pi < 1 iff [We i > 0. It follows that for /3 = - + the Lerat discretization (2.31) 
of (2.18) is unconditionally stable when M is the matrix associated to the 
Chebyshev collocation spatial discretization. The expression (2.33) of the charac- 
teristic root shows that the Lerat scheme coincides with the Beam and Warming 
scheme on the model equation (2.1), i.e., whenever the coefficient matrix A is 
constant, so that it commutes with differentiation. The two methods differ for the 
conservation law (2.29), as it can be seen by comparing (2.15) and (2.30). 

If /I # - f, p has a singularity at A= +J2/lp\ hence the scheme is only con- 
ditionally stable. Since the eigenvalues of the pseudospectral Chebyshev derivative 
are uniformly bounded away from the origin [6. Sect. 23, stability is guaranteed if 
At is chosen sufficiently large. 

Finally, let us observe that jpl d 1 for all /3 < - + if /1 is imaginary. Hence, all the 
Lerat schemes are unconditionally stable when used with a Fourier method in 
space. 

Remark. The previous analysis shows that unconditional stability is achieved 
(at least for /I = - 4) if the stabilizer term in (2.31) is built up by the square of the 
matrix of the pseudospectral derivative including the boundary corlditiom. Instead, 
one could think of a stabilizer term which simply involves the second deri.vative 
operator (in analogy to the finite difference case, see [4]) with no boundary 
condition or, say, Dirichlet boundary conditions. The resulting linear system would 
be of classical elliptic type, for which efficient solution techniques are available. 
Unfortunately, such a method turns out to be unstable. 

Finally, we recall that the scheme (2.31) can be transformed into an equivalent 
scheme in terms of the physical unknowns using again the transformation (2.10). 

The use of a method like (2.3 1) in several space dimensions leads to a stabilizing 
matrix M2 whose condition number is O(N4). Hence a preconditioned iterative 
technique is in order. The effective preconditioning of hyperbolic problems is yet a 
research area (see [7, 131). 

3. EXTENSION TO NONLINEAR SYSTEMS 

Assume now that the system to be solved is 

It’, + A(w) WY + g(w‘1 = 0, (3.1 Lt ! 

where g(,v) is a vector and A(w) is a 2 x 2 matrix which can be diagonalized as 

A(w) = T(w) A(w) T-‘(w) (3.2’1 
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with A(w) = diag(A, ,u], A, ,U E R, 1,~ < 0. The treatment of the boundary conditions 
described in the previous section can be applied here, provided the linear com- 
binations of the physical equations at the boundary points involve as coefficients 
the entries of the matrix Tel(wn). 

The Beam and Warming method was used to simulate a 1 hr transient of isen- 
tropic methane gas in a pipe of lentgh 250 km and diameter 0.5 m. Denoting by p 
the density of the gas and by u its velocity, the equation of motion are (see, e.g., 
Cll) 

Pr + CPU), = 0 

(PU)r + (P + w2L +fP44 = 0, 
(3.3) 

where the Moody friction factory is equal to 0.01. 
System (3.3) is supplemented by an equation of state, which gives the pressure as 

a function of the temperature (supposed to be known) and the density. The flow is 
initially steady and corresponds to an inflow pressure p = 70 bar and to a flow-rate 
per unit cross area q = 244.462 Kg/m*s. The boundary conditions simulate the 
packing of the pipe: the downstream flow-rate is unchanged, while the upstream 
flow-rate is increased linearly by 30% in 360 s, then kept constant at 
q = 3 17.8 Kg/m*s. 

Normalizing the spatial domain to the interval (- 1, 1) we write (3.3) as 

,r,+; {F(w)],+G(w)=O, -l<s<l,t>O, (3.4 j 

where 

and q = pu. Fixing a time step At > 0, we set t” = n At and we define IV” to be a 
couple of polynomials of degree N in space which approximate w(P). We define 
A ,,>‘I = ),jn + 1 - ,tP , A =dF/dw (the Jabobian ofF), and B= aG/dw. 

The implicit Beam and Warming scheme gives at the interior collocation points 
(2.12), 

= - At(aJF(w”)] + G(w”)} for x=.x~, 1 <j< N- 1. (3.5) 

Here 3,” denotes the pseudospectral Chebyshev differentiation, i.e., a,& is the 
derivative of the polynomial d,V which interpolates the function 4 at the nodes 
(2.12). The boundary conditions are treated with the method previously described, 
namely the linear characteristic combination of the physical equations is prescribed 
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TABLE I 

Comparison between Beam and Warming and Modified Euler Time Discretizations. with the Chebys!le\ 
Collocation Method in Space. Exact pinnolr, = ‘74.8080... 

Implicit Explicit 

LY P,“flW CPU time CPU time 

8 1. 74.8084 0.83 E-2 74.8076 0.58 E-2 
10. 74.806 0.88 E-3 
2s. 14.797 0.37 E-3 
50. 74.718 0.19 E- 3 

100. 74.509 0.11 E-3 
200. 74.103 0.87 E-4 
300. 73.071 0.57 E-4 

16 I. 74.8080 0.38 E- 1 74.8080 0.12 E- ! 
10. 74.806 0.39 E-2 
2s. 74.798 0.16 E-2 
50. 14.152 0.86 E-3 

100. 14.65 1 051 E-3 
200. 74.214 0.28 E-3 

300. 73.458 0.31 E-3 

32 1. 74.8080 0.79 E @ 74.8080 0.98 E- 1 
10. 74.8080 0.83 Ep 1 
‘5. 74.807 0.33 E- 1 
50. 74.805 0.17 E- 1 

100. 74.798 0.89 E-2 
200. 74.752 0.45 E - 2 
500. 74.460 0.!9 E-2 
750. 75.360 0.13 E-1 

a.t the boundary together with the boundary values of the flow-rate (I, which are 
given from data. 

Table I contains the values of the computed inflow pressure for different values of 
1V and At. The exact value is 74X080... The time step At has the form Ar = 2 Ai+. , 
where Ar, is the stability limit of the modified Euler method for the same problem. 
The CPU times (in hr) on the Honeywell 6040 at the University of Pavia are also 
reported. The columns on the right contain the computed values and corresponding 
CPU times produced by the modified Euler method, using At = O.!?_lt,. 

These results show that the Beam and Warming method considered in this paper 
is unconditionally stable and more convenient than an explicit method of the same 
order for attaining accuracies of industrial interest. Further results will appear 
elsewhere. 

Note. The scheme of Lerat’s type corresponding to the choice p = - $ in (2.31) 
has been independently proposed in the context of spectral methods in [31. We 
thank one of the referees for bringing this reference to our attention. 
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